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A central debate in philosophy and neuroscience pertains to whether PFC activity plays an essential role in the neural
basis of consciousness. Neuroimaging and electrophysiology studies have revealed that the contents of conscious
perceptual experience can be successfully decoded from PFC activity, but these findings might be confounded by post-
perceptual cognitive processes, such as thinking, reasoning, and decision-making, that are not necessary for con-
sciousness. To clarify the involvement of the PFC in consciousness, we present a synthesis of research that has used
intracranial electrical stimulation (iES) for the causal modulation of neural activity in the human PFC. This research
provides compelling evidence that iES of only certain prefrontal regions (i.e., orbitofrontal cortex and anterior cingu-
late cortex) reliably perturbs conscious experience. Conversely, stimulation of anterolateral prefrontal sites, often con-
sidered crucial in higher-order and global workspace theories of consciousness, seldom elicits any reportable
alterations in consciousness. Furthermore, the wide variety of iES-elicited effects in the PFC (e.g., emotions, thoughts,
and olfactory and visual hallucinations) exhibits no clear relation to the immediate environment. Therefore, there is
no evidence for the kinds of alterations in ongoing perceptual experience that would be predicted by higher-order or
global workspace theories. Nevertheless, effects in the orbitofrontal and anterior cingulate cortices suggest a specific
role for these PFC subregions in supporting emotional aspects of conscious experience. Overall, this evidence presents
a challenge for higher-order and global workspace theories, which commonly point to the PFC as the basis for con-
scious perception based on correlative and possibly confounded information.

Introduction
Many neuroscientists, philosophers, and psychologists inter-
ested in the problem of consciousness are now focused on
deciphering its neural basis (Crick and Koch, 1990; Chalmers,
2000). This debate generally defines consciousness in terms
of conscious experience, or “what it is like” to have an experi-
ence (often called phenomenal consciousness) (Nagel, 1974;
Block, 1995; Chalmers, 1996), and we follow this sense here.
The past decade has seen a large number of studies focused
on uncovering what role, if any, activity in the human PFC
plays in phenomenal consciousness (Michel and Morales,

2020). Most proponents of PFC involvement in conscious ex-
perience subscribe to either higher-order or global work-
space theories (Baars, 1993; Dehaene, 2014; Brown et al.,
2019; Lau, 2019; Cleeremans et al., 2020; Mashour et al.,
2020). Under these frameworks, perceptual content must be
re-represented or maintained in association regions involved
in cognitive processing to reach consciousness; these
theories therefore endorse an essential role for the PFC in
consciousness.

On the other side are those who endorse first-order recurrent
activation theories of consciousness (Silvanto et al., 2005;
Lamme, 2014; Billeke et al., 2017; Block, 2019). These theorists
argue that the PFC is neither necessary nor sufficient for con-
sciousness, but rather that conscious contents are deter-
mined locally in sensory systems. The key difference between
these views hinges on whether local sensory processing is
sufficient for conscious perception, or whether unconscious
sensory contents require interaction or other involvement
with “higher” cognitive systems for conscious experience to
arise. The PFC has therefore become the central focus of
these debates because of its established roles in attention,
working memory, and other complex cognitive functions
(Boly et al., 2017; Odegaard et al., 2017).
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It is important to distinguish between the neural constitution
of consciousness and contingent global enabling factors of con-
sciousness (Boly et al., 2017). For example, blood flow ena-
bles conscious processing but does not constitute it (but see
Moore and Cao, 2008). Therefore, advocates of first-order
recurrent activation can allow that PFC activity may control
arousal, thus enabling sensory cortices to be activated, yet none-
theless argue that PFC activity is not constitutive of consciousness.
Similarly, proponents of prefrontal involvement can allow that,
without sensory input, there would be no perceptual conscious-
ness, yet argue that only PFC activity plays a constitutive role.
Throughout this Viewpoints article, we are concerned with the
neural constitution of consciousness, not the enabling conditions.

Neuroimaging studies showing increased prefrontal engage-
ment during conscious sensory processing have provided primary
empirical evidence in favor of prefrontal involvement in con-
sciousness (Lau and Passingham, 2006; Dehaene and Changeux,
2011). Furthermore, several compelling studies have successfully
decoded the contents of conscious perception from activity in
the monkey PFC during binocular rivalry and flash suppression
tasks, in which perception is not dependent on the stimulus
(Panagiotaropoulos et al., 2012, 2020; Safavi et al., 2014; Kapoor et
al., 2018, 2019, 2020). However, it has been claimed that these
findings might be confounded by postperceptual, cognitive proc-
esses related to sensory content (e.g., thinking or reasoning about
the stimulus), which may not be necessary for conscious experi-
ence (Block, 2019, 2020). Whether or not the PFC plays an essen-
tial role in consciousness therefore remains intensely debated, and
current methods in human neuroscience, which are almost exclu-
sively correlational in nature, seem unable to resolve the contro-
versy (Boly et al., 2017; Odegaard et al., 2017).

In this Viewpoints article, we synthesize a crucial body of evi-
dence that can help clarify the role of the PFC in consciousness,
but which has been largely overlooked by both proponents and
opponents of prefrontal theories: namely, perturbations of con-
scious experience elicited by intracranial electrical stimulation
(iES) of the PFC in awake neurosurgical patients (for readers
unfamiliar with the method, we provide a brief overview in Box
1). Despite its limitations, iES provides probably the best means
of causally perturbing brain function in humans, and iES
throughout the brain has long been known to cause radical, yet
replicable, changes in conscious experience (for comprehensive
reviews, see Selimbeyoglu and Parvizi, 2010; Desmurget et al.,
2013). The causal information afforded by iES could provide crit-
ical evidence regarding whether activity in the PFC reflects con-
scious percepts that are based in the PFC or, alternatively, are
byproducts of conscious states based in other parts of the cere-
bral cortex (or even subcortical regions).

Although iES has been used in patients with brain disease
for more than a century (Borchers et al., 2012), reports of iES
of the frontal lobe are relatively rare and are scattered
throughout a vast and little-known literature. In an effort to
inform the debate regarding consciousness and the PFC, we
present a concise review of studies probing changes in con-
scious experience caused by iES of the human PFC. Our syn-
thesis of the available data reveals a complex picture that
does not provide unequivocal support for either theoretical
viewpoint: we find that iES-elicited effects in the PFC are
rare, highly specific, and largely confined to particular subre-
gions, such as the ACC and orbitofrontal cortex (OFC). In
contrast, stimulation of the anterolateral PFC regions that
figure most prominently in prefrontal theories of conscious-
ness seldom elicits changes in conscious experience.

Box 1. iES: a brief overview of the method’s strengths
and limitations. iES is typically used in epileptic patients
implanted with tens to hundreds of electrode contacts to
precisely localize the source of medication-resistant seiz-
ures. Electrode grids placed on the surface of the cortex,
or depth probes penetrating into deep subcortical struc-
tures, can be used (Fig. 1). These electrode contacts pas-
sively record population neuronal activity but can also be
used to deliver current to stimulate specific neuronal pop-
ulations during the iES procedure (Parvizi and Kastner,
2018). Typically, bipolar stimulation (across two adjacent
electrodes) is administered at 50Hz and between 2 and
10mA, in line with an empirically derived safe window
(Gordon et al., 1990). Sham stimulation is used to control
for demand characteristics, especially when meaningful or
intense experiences are reported, and has proven to be a
very effective control (Fox and Parvizi, 2021; Fox et al.,
2020). Following each iES stimulation (or sham), the
patient is asked standardized, open-ended questions about
whether any effect was elicited (e.g., “Did you experience
any change?”), with follow-up questions as needed to clar-
ify the specific effects.
This approach has revealed a striking variety of effects on
conscious experience depending on the brain region
stimulated. For instance, iES of the medial temporal lobe
can elicit detailed episodic memories and hallucinatory,
dream-like experiences (Curot et al., 2017); iES of face-
selective areas of the fusiform gyrus produces marked and
selective changes in conscious face perception (Parvizi et
al., 2012; Rangarajan et al., 2014; Keller et al., 2017;
Schrouff et al., 2020); and stimulation of unimodal
regions generally elicits simple effects in the correspond-
ing sensory modality, such as perception of phosphenes,
shapes, and colors following iES of the occipital lobe
(Selimbeyoglu and Parvizi, 2010; Winawer and Parvizi,
2016; Bosking et al., 2018). The variety of elicited effects is
seemingly limitless and also includes laughter (Fried et al.,
1998), pain (Mazzola et al., 2012), and even gross altera-
tions of self-awareness (“out-of-body” experiences)
(Blanke et al., 2002). Importantly, even high-level, non-
perceptual effects can be evoked, such as the intention to
move (Desmurget et al., 2009) or a strong will to perse-
vere in the face of imminent challenges (Parvizi et al.,
2013).
While iES is a powerful causal method for investigating
human brain function (Desmurget et al., 2013), its various
limitations also need to be acknowledged. On the subjec-
tive side, patients might underreport subtle effects (false
negatives), or overreport effects due either to demand
characteristics (Nichols and Maner, 2008) or to confusion
of ongoing spontaneous thoughts with iES-elicited effects
(false positives). Many striking case studies have demon-
strated, however, that patients are eloquent and determined
reporters of even nuanced and complex iES-elicited effects
(e.g., Blanke et al., 2002; Desmurget et al., 2009; Parvizi et al.,
2013), greatly mitigating the concern over false negatives.
Moreover, quantitative assessment of first-person reports fol-
lowing sham stimulation has shown that false positives are
indeed extremely rare. Patients almost never report effects
following sham trials, suggesting that demand characteristics
are minimal and also that patients reliably distinguish
between their ongoing spontaneous mentation and any

Raccah et al. · Intracranial Stimulation of the Human Brain J. Neurosci., March 10, 2021 • 41(10):2076–2087 • 2077



experiences elicited by iES (Fox and Parvizi, 2021; Fox et al.,
2020).
On the neurophysiological side, the effects of injecting
electrical current into living brain tissue are poorly under-
stood (Rattay, 1999; Tehovnik et al., 2006; Winawer and
Parvizi, 2016). At the neuronal level, whether iES induces
excitation, inhibition, or some mix of both remains
unclear. Little is known about the degree to which current
spreads beyond the stimulating electrode site, either pas-
sively through volume conduction or actively through
neuronal signal propagation. Further, there is wide vari-
ability in the stimulation parameters and electrode types
used by different research groups, and the busy inpatient
hospital setting of iES research seldom allows for a com-
prehensive exploration of this parameter space. This is crit-
ical because the effects elicited by iES are known to vary
with the frequency and amplitude of stimulation (Mohan et
al., 2020), with higher parameter values tending to elicit
more potent responses across many domains, including vis-
ual (Winawer and Parvizi, 2016; Bosking et al., 2017), physi-
ological (Inman et al., 2018), and emotional effects (Yih et
al., 2019). Additionally, research throughout the early-to-
mid 20th century tended to use monopolar stimulation (as
do most DBS interventions today), whereas bipolar stimula-
tion is the standard in most contemporary iES functional
mapping sessions. To our knowledge, the consequences of
such differences (if any) have never been systematically
explored. Finally, even when standardized stimulation pa-
rameters are used, differences in the particular tissue being
stimulated need to be considered. Regions throughout the
brain exhibit high variability in local synaptic connectivity,
cytoarchitecture, and broader functional-anatomic network
properties. These specific properties almost certainly inter-
act with iES pulses, influencing their reception and propaga-
tion in a given type of brain tissue, and ultimately their
effect (if any) on behavior and subjective experience (Fox et
al., 2020).
A broader concern is that the brains being investigated all
belong to patients with severe neurologic disease of some
kind (usually epilepsy, but also brain tumors and, increas-
ingly, medication-resistant psychiatric illness). In addition
to any inherent pathologic activity or anatomy, chronic
neurologic and psychiatric illness likely lead to compensa-
tory neuroplastic changes at both the functional and struc-
tural level (Sutula, 2004; Ketzef et al., 2011; Mole et al.,
2016). The extent of the alterations to normal neuro-
physiological function induced by both pathology and
plasticity in severe epilepsy is not precisely known.
Nonetheless, recent work has found that pathologic ep-
ileptic brain tissue indeed shows normal stimulus-
evoked responses when seizures are not occurring (S.
Liu and Parvizi, 2019). These responses are indistin-
guishable from those elicited in healthy (i.e., nonepi-
leptic) brain tissue distant from the seizure focus (S.
Liu and Parvizi, 2019). Yet because of the unavoidable
absence of normal controls, concerns over whether iES
and other intracranial EEG data are generalizable to
healthy human brains will always linger. All the many
caveats listed above should be kept in mind when
interpreting and drawing inferences from the empirical
iES literature.

What would various theories of consciousness predict the
effects of iES within the PFC to be?
Before considering the empirical data, it is crucial to have some
idea of what various models of the neural basis of consciousness
would predict to happen when PFC activity is modulated with
iES. Most models have not explicitly addressed or included iES
data (hence the present Viewpoints article); therefore, specific
predictions are generally lacking from theoretical accounts.
While we do not wish to commit other researchers to any spe-
cific hypotheses they have not explicitly endorsed, we nonethe-
less provide a brief overview of what we believe various theories
should and would predict to be the effect of iES to the PFC.

Higher-order (or “cognitivist”) theories have proposed vari-
ous ways in which perceptual representations might interact
with, or be instantiated in, PFC activity (Lau and Rosenthal,
2011; Brown, 2015), which we divide into two general types. In
one version of higher-order theories, the “double representation”
model, the perceptual contents of conscious experience are rep-
resented in the PFC as well as sensory cortices (Lau and
Rosenthal, 2011; Brown, 2015). According to this model, the
content of the PFC representation at least partly determines the
conscious content (Rosenthal, 2011). If this view is correct, then
iES to the PFC should perturb the perceptions that patients are
currently experiencing. For example, stimulation in a patient
who is visually aware of the doctor’s face is expected to result in
an alteration related to the face (e.g., distortion of facial features).
In the other version of higher-order theories, known as “percep-
tual reality monitoring,” percepts are not directly re-represented
or duplicated in the PFC, but rather PFC representations are
thought of as indexes or pointers that refer to particular percep-
tual content in sensory cortices (Lau, 2019; Cleeremans et al.,
2020). The contents of the pointers are thought to indicate
whether the perceptual content is likely to reflect the world accu-
rately. According to this view, iES to the PFC may result in
indexing of different sensory content (making a previously
unconscious first-order representation conscious) or it might
disrupt this monitoring process altogether. Again, based on this
indexing or pointer view, stimulation would be predicted to
change ongoing perceptual experience, but it would not be
expected to produce entirely novel experiences unrelated to
ongoing conscious perception (i.e., hallucinations or imagined
experiences).

In the case of global workspace theories, PFC activity is
thought to be involved in maintaining and broadcasting specific
perceptual contents (Mashour et al., 2020). For example, when a
participant is conscious of a face, perhaps by virtue of activity in
the fusiform face area, this content is maintained by a neural coa-
lition involving the lateral PFC. This framework should therefore
predict that iES to the PFC will alter or impede global broadcast-
ing or perhaps change the content that is globally broadcast.
Again, we would expect an alteration or disruption in ongoing
perception, but not outright hallucination. In summary, all
higher-order and global workspace views argue that PFC plays a
constitutive role in consciousness; consequently, all should pre-
dict some sort of alteration of ongoing conscious experience in
patients following iES of the PFC.

Noncognitivist theories of consciousness (e.g., recurrent acti-
vation theories) (Silvanto et al., 2005; Lamme, 2014; Billeke et al.,
2017) should generally predict no changes in ongoing perceptual
experience following PFC stimulation, except to the extent that
PFC activation affects arousal level or other enabling conditions
of conscious experience. However, noncognitive approaches do
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allow for conscious aspects of conceptual thought and other cog-
nitive processes (which are generally consistent with, and specific
to, the acknowledged functional roles played by the PFC) to be
based in PFC (Block, 2019). Therefore, insofar as conceptual
thought or other cognitive processes have phenomenal qualities
and are based in the PFC, perturbations in these contents of con-
scious experience do not provide unequivocal support for either
side of the debate. Information integration theories of con-
sciousness, such as IIT (Tononi et al., 2016), do not rule out a
role for the PFC in consciousness, but they argue that the local
connectivity patterns found in the PFC are not well suited
for integrating information. Information integration theory
should therefore predict relatively few changes in conscious
experience following stimulation to PFC subareas relative to
iES of more posterior sensory areas.

Changes in conscious experience elicited by iES of human
PFC
The PFC comprises a large portion of the cortical mantle.
Although definitions vary, standard anatomic demarcations of
the PFC exclude motor regions of the frontal lobe but include all
more anterior areas (i.e., Brodmann areas 8-14 and 44-47, as well
as aspects of the cingulate gyrus, including areas 24, 25, and 32;
Fig. 2) (Carlén, 2017; Dixon et al., 2017). Significant functional
heterogeneity is apparent across and within these distinct ana-
tomic subareas (Dunbar and Sussman, 1995; Miller and Cohen,
2001).

Situating the PFC within a whole-brain gradient of iES-elicited
effects
Although legendary neurosurgeon Wilder Penfield reported elic-
iting an incredible variety of effects throughout the human brain,
he never reported any nonmotor effects in PFC regions (Penfield
and Boldrey, 1937; Feindel and Penfield, 1954; Penfield, 1958;
Mullan and Penfield, 1959; Penfield and Perot, 1963). Consistent
with Penfield’s findings, lesion studies from a century of neuro-
surgery research show that areas of the PFC can be removed
with little apparent change in conscious experience to the
patient, whereas lesions in primary motor or sensory areas (often
referred to as eloquent cortex) cause striking differences in con-
tent-specific perceptual experience (Henri-Bhargava et al., 2018;
Koch, 2019).

The apparent rarity of reports of conscious changes following
iES of the PFC raises the question of just how rare these effects
really are relative to the rest of the cortex. A recent study we con-
ducted shed light on this question (Fox et al., 2020). We analyzed
iES-elicited effects across 67 neurosurgical patients and 1537
electrode sites covering the entire cerebral cortex, exploring the
probability that iES would elicit effects across all cortical regions
in the human brain. We found a global gradient in the rate of eli-
cited perceptible effects (which we refer to as elicitation rate),
with the highest chance (;67%) of eliciting an effect in unimodal
regions, such as the primary visual cortex. Conversely, stimula-
tion of the most anterior PFC regions (both medial and lateral)
yielded the lowest elicitation rates in the entire brain (Fig. 3).
Effects were sometimes observed in particular PFC subregions,
however, such as the OFC and ACC. This study provided a
large-scale, quantitative confirmation of a conclusion already evi-
dent from qualitative assessments of the iES literature (Penfield
and Perot, 1963; Selimbeyoglu and Parvizi, 2010): stimulation of
the most anterior aspects of the PFC (whether medial or lateral)
almost never affects conscious experience. These findings cor-
roborate those of a recent study showing only null results in sen-
sory phenomenology in a large cohort of 36 patients in whom
various medial PFC regions were stimulated (compare Trevisi et
al., 2018, their Fig. 2). Nonetheless, occasional exceptions to this
general trend have been reported in isolated case studies (Blanke
et al., 2000; Vignal et al., 2000; Vaca et al., 2011; Popa et al., 2016;
A. Liu et al., 2020), and the details of effects elicited in the OFC
and ACC are also of considerable interest. The subsequent sec-
tions explore evidence for iES-elicited effects in various PFC sub-
regions in detail.

Effects following iES of the lateral PFC
Conscious visual perception is studied using “masking” para-
digms, the attentional blink, continuous flash suppression, and
other techniques (Kim and Blake, 2005; Tsuchiya and Koch,
2005; Breitmeyer et al., 2006; Yang et al., 2014), which render tar-
get stimuli subjectively imperceptible. Numerous neuroimaging
studies have shown that reported versus unreported visual per-
ception is associated with differences in activation in the dorso-
lateral PFC (DLPFC) (Lau and Passingham, 2006; Dehaene and
Changeux, 2011). Higher-order and global workspace theories
have implicated the lateral PFC in conscious perception on the
basis of these findings. In a notable example, Lau and Rosenthal

Figure 1. iES of the human brain via two common approaches. A, Electrocorticography uses strips or grids of electrodes implanted subdurally on the surface of the cortex. B, Stereo-EEG
uses penetrating depth electrode arrays following stereotactic coordinates to target deeper brain structures. Modified with permission from Fox et al. (2018a).
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(2011) proposed a higher-order model of visual consciousness in
which sensory information originating in the occipital lobe is
rendered conscious when re-represented in the DLPFC as well as
lateral frontopolar cortex (i.e., Brodmann area 10; Fig. 2). This
model focuses specifically on visual consciousness, but recent
variants of higher-order theories have implicated the DLPFC
and frontopolar cortex in emotional consciousness as well
(LeDoux and Brown, 2017; LeDoux, 2020a). Furthermore, such
models have recently been expanded to accommodate other sen-
sory modalities by incorporating the ventrolateral PFC (VLPFC)
(Jack and Shallice, 2001; Brown et al., 2019). The lateral PFC,
broadly defined, has therefore become a central focus for propo-
nents of prefrontal involvement in consciousness.

Despite widespread reports of null effects following iES of
the PFC (Penfield and Perot, 1963; Selimbeyoglu and Parvizi,
2010; Fox et al., 2020), spontaneous epileptic discharges in
the PFC have occasionally been noted to induce visual per-
ceptual experiences (Bancaud and Talairach, 1992; Chauvel
et al., 1995; Manfioli et al., 2013). Furthermore, the PFC dis-
plays ample anatomic connections to temporal lobe struc-
tures which, when stimulated, yield a wide range of often
intense effects (Selimbeyoglu and Parvizi, 2010; Curot et al.,
2017). Building on similar evidence, Blanke et al. (2000)
administered iES in the left lateral PFC of 2 patients. In
Patient 1, the authors reported complex visual hallucinations
produced by stimulating two adjacent electrodes located in
the VLPFC. The patient reported: “All of a sudden it seems
as if many things are coming at me, I can hardly see them
[...] at the same time, a church, a castle, a big room.” Following
stimulation of a neighboring site, the patient reported: “It seems to
me as if a lot of thoughts are coming, but it seems to me as if I do
not have the time to retain them all.” In Patient 2, stimulation of
the posterior aspect of the DLPFC, directly anterior to the frontal
eye fields (Fig. 4), similarly elicited an immersive, hallucinatory
visual experience. The patient described the “presence” of a young
man in the room adjoining her own, as well as details of the man’s
clothing and physical appearance. The authors concluded that iES
of DLPFC and VLPFC could elicit immersive visual experiences
similar to the episodic and dream-like experiences usually only
reported following iES of the temporal lobe (Curot et al., 2017),
although they acknowledged that the reported effects could be
understood as perturbation of ongoing, conceptual thought proc-
esses rather than visual hallucinations per se.

The notion that the elicited experiences might instead be
more abstract and conceptual in nature is suggested by Patient 1
reporting “thoughts coming all at once,” as well as Patient 2
describing the elicited experience as akin to “an idea or thought.”

However, the authors pointed to prior evidence that spontaneous
epileptic auras characterized by conceptual thoughts tend to
involve recurrent and specific thought content (e.g., a particular
word or phrase) (Mendez et al., 1996) and are often accompanied
by speech impediments (Penfield, 1972; Mendez et al., 1996),
neither of which were observed in these cases. Moreover, patients
suffering from intrusive conceptual thoughts generally report no
alteration in perceptual experience. Blanke et al. (2000) therefore
concluded that the observed effects more likely reflected changes
in visual experience, rather than conceptual or abstract thoughts.

Importantly, this interpretation is challenged by recent evi-
dence showing that stimulation at comparable anatomic sites in
the left DLPFC and VLPFC yielded marked changes in thought
content without any reported changes in perceptual experience
(A. Liu et al., 2020). A. Liu et al. (2020) described 3 patients who
reported conceptual thoughts following lateral PFC stimulation
(Fig. 4). For instance, 1 patient reported conceptual thoughts fol-
lowing stimulation to the left VLPFC: “I had a thought about a
game that kids play in the summer, I can’t think of the exact
game.” In another patient, stimulation of the left DLPFC and
middle frontal gyrus elicited thoughts about “a person.” In con-
trast to the reports by Blanke et al. (2000), the patient was not
able to describe the person’s physical characteristics and con-
firmed that the experience was not visual in nature. Lastly, in
another patient, the authors reported “complex auditory phe-
nomena” following stimulation to a posterior VLPFC site.
However, similar effects were reported in the neighboring elec-
trode pairs in the superior temporal gurus, suggesting that this
isolated effect may be because of the close anatomic proximity of
auditory regions in the temporal lobe.

In another study, Popa et al. (2016) reported 1 patient in
whom stimulation to the DLPFC produced similar reports of
conceptual thought following stimulation, as well as 2 patients in
whom iES of white matter underlying the posterolateral PFC
caused reportable changes in thought content. While effects fol-
lowing stimulation of white-matter pathways should be inter-
preted with caution, Popa et al. (2016) nonetheless provide
further confirmation of the rarity of changes in conscious con-
tent following iES to posterior subregions of the lateral PFC and
the extent to which these rare elicited experiences are devoid of
perceptual content.

In a notable case study, Vignal et al. (2000) reported a patient
in whom iES of the right VLPFC (Fig. 4) consistently caused
face-related visual hallucinations across two stimulation sessions.
For instance, the patient reported: “I see many faces appear...
there was one with glasses, others with hats.” When viewing the
doctor’s face, the patient reported “it is as if your face was

Figure 2. Anatomical parcellation of the human PFC. PFC regional delineation based on prior anatomic and neuroimaging studies. sgACC, Subgenual ACC; pgACC, pregenual ACC; aMCC, ante-
rior mid-cingulate cortex; lOFC, lateral OFC; mOFC, medial OFC; lFPC, lateral frontopolar cortex; mFPC, medial frontopolar cortex; vFPC, ventral frontopolar cortex; DMPFC, dorsomedial PFC.
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transformed, one time without glasses, once with a hat, but
always the same face” and “it was as if you changed your face,
that it was remodeled and that it became another face and so
forth.” Although this case study is intriguing, the patient
reported similar face hallucination experiences while looking at
the doctor’s lab coat before looking at the doctor’s face and the
patient refers back to those hallucinations, saying “many faces
again” (emphasis added). Therefore, it is not entirely clear
whether this effect was a hallucination or a perturbation of
ongoing perception. If the latter, then to our knowledge, this is
the only case of perturbation of ongoing perceptual experience
ever reported following iES to the lateral PFC.

Finally, Vaca et al. (2011) reported a single case in which
stimulation of the posterior VLPFC repeatedly induced a sensa-
tion of mirth along with laughter. As far as we are aware, no sim-
ilar mirth sensations (alone or with laughter) have ever been
reported following iES to the lateral PFC, before or since,
although such effects have been reported in the supplementary
motor area (Fried et al., 1998) and the ventral temporal cortex
(Arroyo et al., 1993; Satow et al., 2003).

These studies (Blanke et al., 2000; Vignal et al., 2000; Vaca et
al., 2011; Popa et al., 2016; A. Liu et al., 2020) represent, to our
knowledge, the only published reports of iES-elicited effects

in lateral PFC regions (not counting motor effects in various
frontal motor areas). The sparsity of research reports, the
small number of participants, and the general lack of consist-
ent findings to date mean that these effects need to be treated
with considerable caution. It is also notable that these re-
sponsive electrode sites were always in the more posterior
parts of the lateral PFC (Fig. 4). To our knowledge, iES-eli-
cited effects in frontopolar cortex (whether medial, lateral, or
ventral) have never been reported in the literature (Fig. 4).
And as noted above, a recent study we conducted with a large
cohort of iES patients (n = 67) likewise found exclusively null
effects in frontopolar cortex (Fox et al., 2020).

Effects following iES of the anteromedial PFC
Relative to other PFC subregions, such as the OFC, ACC, and
lateral PFC (Dehaene and Changeux, 2011; Brown et al., 2019),
anteromedial prefrontal regions (i.e., Brodmann areas 9m and
10m) have received little attention in neural models of conscious-
ness. We are not aware of any past research that reports iES-
induced phenomenal changes in these regions (Selimbeyoglu
and Parvizi, 2010), and recent work across dozens of patients,
from both our own group (Fox et al., 2020) and others (Trevisi et
al., 2018), indicates only null results in these areas.

Figure 3. Mean elicitation rate across the entire cerebral cortex as a function of iES. The mean elicitation rate across 67 participants (1537 electrode sites) projected onto a standardized brain
template. A, Red circles represent electrode sites where stimulation induced a change in conscious experience or evoked motor responses (of which the patient was also consciously aware).
Black circles represent “null” electrode sites where no effects of any kind were elicited, even with repeated high-amplitude stimulation. Distinct colors represent 17 individual largescale brain
networks based on resting-state fMRI connectivity and clustering analysis (Yeo et al., 2011). B, Mean elicitation rate within individual brain networks. The highest response rates are in somato-
motor and visual networks, whereas default, limbic and other transmodal networks show the lowest elicitation rates. Reproduced with permission from Fox et al. (2020).
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Effects following iES of the OFC
To date, proponents of PFC involvement in consciousness have
primarily focused on the role of the lateral PFC in visual con-
sciousness. Nevertheless, several models also include the OFC
as a locus for integrating multimodal perceptual, cognitive, and
emotional experience (Baylis et al., 1995; Cavada et al., 2000;
Brown et al., 2019). Under higher-order theories, the OFC has
been theorized to either generate so-called “first-order” (non-
conscious) information, which is then rendered conscious
through interaction with the lateral PFC, or to itself serve to
enable conscious experience (Brown et al., 2019). Despite the
clear importance of this region to higher-order processes, such
as personality and the sense of self (Kringelbach and Rolls,
2004; Northoff et al., 2006), remarkably few studies in more
than a century of such research have reported effects of iES to
the OFC (Selimbeyoglu and Parvizi, 2010). Occasional case
studies of iES of the OFC have reported tingling sensations and
muscle twitching (Begum et al., 2006), as well as epigastric and
retrosternal sensations (Mulak et al., 2008). Intriguingly, in an
early study, Mahl et al. (1964) reported memory recall, halluci-
nations, illusions, and even changes in personality following
OFC stimulation in a single patient, but these effects were never
replicated in a larger cohort or with modern electrode localiza-
tion procedures.

Recently, we conducted a more comprehensive study (Fox
et al., 2018b), with iES applied in the OFC of 22 epilepsy
patients. Across patients and 172 unique stimulation sites,
OFC stimulation produced vivid reports of olfactory, gusta-
tory, somatosensory, and multimodal (combined smell and
taste) perceptual experiences. Changes in visual experience,
however, were never reported. We also showed that elicited
perceptual experience was often coupled with emotion (e.g.,
aversive smells or pleasant tastes), although “pure” emotional
experience, devoid of sensory content (e.g., “sadness”), was
also occasionally reported. Importantly, despite the diverse
and often complex changes reported, effects were nonetheless
very rare overall: stimulation of 83% of electrodes never
yielded any effects whatsoever. This low elicitation rate (17%)
is in marked contrast to unimodal brain regions, where posi-
tive response rates can reach 67% (Fox et al., 2020). Moreover,
an anterior-posterior gradient was observed, such that the
middle and posterior parts of OFC showed the highest rate of
effects, whereas the most anterior OFC sites (i.e., the ventral
frontal pole, BA 10) showed a complete absence of effects
(compare Fox et al., 2018b, their Fig. 1).

In general agreement with these findings, recent work by Rao
et al. (2018) showed that iES of the lateral OFC caused improve-
ments in mood in patients with moderate to severe trait depres-
sion, whereas iES of medial OFC had no significant effect.
Stimulation of the ACC produced analogous improvements in
mood, although with less consistency than stimulation of OFC.
This study provided further confirmation that stimulation of
specific PFC subregions can result in high-level changes in con-
scious experience, such as alterations of mood.

Effects following iES of the ACC
The ACC has been implicated in a variety of “higher” cognitive
functions, including emotional monitoring, attention allocation,
and reward-based decision-making (Devinsky et al., 1995; Lane
et al., 1998; Bush et al., 2002), and has received considerable
attention from proponents of prefrontal involvement in con-
sciousness. Consistent with a role for the ACC in consciousness,
neuroimaging studies coupled with masking paradigms have

shown greater ACC activation associated with reported relative
to unreported processing of visual (Dehaene et al., 2001; Gross et
al., 2004; Sergent et al., 2005; Van Gaal et al., 2011), auditory
(Sadaghiani et al., 2009), and even somatosensory stimuli (Boly
et al., 2007). Global workspace theorists have also pointed out
that the high density of long-range excitatory pyramidal neu-
rons found in the ACC could plausibly serve as a substrate for a
highly integrative function, such as consciousness (Dehaene
and Changeux, 2011; Mashour et al., 2020). Recent accounts of
higher-order theories (LeDoux and Brown, 2017; Brown et al.,
2019; LeDoux, 2020a) have suggested that the ACC (like the
OFC) contributes to more complex aspects of phenomenal con-
sciousness (e.g., emotions, memories, sense of self, and so on),
either independently or via interactions with the lateral PFC
(LeDoux and Brown, 2017; Brown et al., 2019; LeDoux, 2020a).

iES of the ACC has resulted in intriguing reports of the urge
to move (Kremer et al., 2001) and to laugh (Chassagnon et al.,
2008), as well as the actual motor expression of laughter and
smiling (Sperli et al., 2006). ACC stimulation can also elicit phys-
iological effects, such as changes in pulse rate, blood pressure,
and skin conductance (Pool and Ransohoff, 1949; Talairach et
al., 1973; Mangina and Beuzeron-Mangina, 1996; Parvizi et al.,
2013). A wide variety of other effects have been reported, includ-
ing digestive sensations (Mulak et al., 2008), vestibular hallucina-
tions (Kahane et al., 2003), anxiety and physical pain (Kahane et
al., 2003; Mulak et al., 2008), and in the pregenual ACC, fear
(Fox et al., 2020). It is worth noting that a variety of motor effects
can also be elicited (Talairach et al., 1973; Lim et al., 1994;
Selimbeyoglu and Parvizi, 2010), although these are not relevant
to the present discussion.

In a recent study, Parvizi et al. (2013) applied iES to the an-
terior midcingulate cortex in 2 patients, producing complex,
high-level effects on conscious experience. Stimulation in both
patients elicited an intense feeling of perseverance in the face of
an imminent challenge. For instance, Patient 1 provided the fol-
lowing analogy to explain the induced experience: “I started
getting this feeling like ... I was driving into a storm.” When
asked if this was a negative experience, the patient responded
“... it was more of a positive thing like ... push harder, push
harder, push harder to try and get through this ....” Patient 2
also reported anticipating adversity but felt strongly that he
would prevail and not give up, saying “I feel like ... I have to
fight it, you know? I have to make it through.” The consistent
and striking alterations in experience produced in these 2 cases
support a critical role for the ACC in emotional regulation and
motivational states, and corroborate an early report that ACC
stimulation elicited positive emotional effects and led to
euphoric feelings (Talairach et al., 1973). Overall, these effects
suggest that the ACC might play a local role in subserving cer-
tain conscious contents (i.e., emotional content) and therefore
do not support higher-order or global workspace theories, nor,
however, do they provide support for alternative theories sug-
gesting a posterior “hot zone” substrate for consciousness
(Koch et al., 2016; Koch, 2018).

Expanding on this work showing that iES of OFC and ACC
can elicit profound effects on consciousness, Yih et al. (2019)
explored whether the intensity of changes in conscious experi-
ence was linked to the magnitude of the electrical stimulation
itself. First, they replicated prior work showing that ACC stimu-
lation elicited changes primarily in the visceral and somatic
domains, while stimulation to the OFC elicited changes chiefly
in olfactory experience. However, this study also revealed a sig-
nificant linear correlation between the magnitude of electrical
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stimulation (ranging from 2 to 8mA) in both the ACC and
OFC and the subjective intensity of changes in conscious ex-
perience, especially for emotional phenomenology: that is,
increasing the magnitude of stimulation elicited increasingly
intense emotional experiences (Yih et al., 2019). This study
reported compelling evidence that stimulation parameters
directly affect the intensity of subjective effects elicited in
prefrontal regions, providing strong support for the suitabil-
ity of the iES method for probing the link between prefrontal
regions and conscious experience.

Finally, an early study using deep brain stimulation (DBS) for
treatment-resistant depression eported that iES of the subgenual
ACC (BA 25) induced a variety of positive emotional experien-
ces, including “connectedness” and “calmness,” in 6 patients
(Mayberg et al., 2005). Importantly, the stimulation parameters
of DBS are not identical to those typically used in iES functional
mapping sessions (although they are similar; see Box 1); more-
over, a multicenter clinical trial of subgenual ACC DBS failed to
replicate these positive emotional effects (Morishita et al., 2014).

Nonetheless, we include these effects here for the sake of
completeness.

Overall then, while the heterogeneity of effects elicited in the
OFC and ACC (Fig. 4) does not suggest a general role for these
PFC regions in consciousness, these areas might nonetheless
underlie emotional aspects of conscious experience (commonly
referred to as emotional feelings) (LeDoux, 2020b). Our review
of the extant data shows that stimulation of these regions elicits a
variety of conscious changes in basic affective state and also com-
plex emotional experience, which have been replicated across
tens of patients in recent years (Selimbeyoglu and Parvizi, 2010;
Parvizi et al., 2013; Fox et al., 2018b; Rao et al., 2018; Yih et al.,
2019). Importantly, this evidence may provide support for recent
accounts of higher-order theories of emotional consciousness
(LeDoux and Brown, 2017; LeDoux, 2020a), which postulate that
subcortical circuits generate unconscious emotional content
that is then rendered conscious in cortical networks involved in
“higher” cognitive processing. Although the ACC and OFC
figure prominently in higher-order models of emotional

Figure 4. Summary of subjective effects following iES of the human PFC. A synthesis of subjective reports following iES to the medial (top left), lateral (top right), and ventral (bottom) por-
tions of the human PFC. Arrows from text boxes point to the approximate stimulation sites. While reports have been accurately linked to specific PFC subregions, the placements are intended
to be illustrative; locations are not exact. While this schematic provides a representative summary of the data, several cases which have not been replicated beyond a single subject are not
included, although they are discussed in the main text. However, we include the case report by Vignal et al. (2000) given its relevance to the current debate. Detailed discussions of the subjec-
tive effects represented in this figure can be found in the original reports. sgACC, Subgenual ACC; pgACC, pregenual ACC; aMCC, anterior mid-cingulate cortex; lOFC, lateral OFC; mOFC, medial
OFC; lFPC, lateral frontopolar cortex; mFPC, medial frontopolar cortex; vFPC, ventral frontopolar cortex; DMPFC, dorsomedial PFC.
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consciousness, these regions are often proposed to interact with
lateral prefrontal subregions to support emotional conscious-
ness (LeDoux and Brown, 2017; LeDoux, 2020a), and the latter
have yet to show changes in emotional experience following iES
(Fig. 4).

Conclusions and future directions
In the ongoing debate over what role, if any, the PFC plays in
consciousness, both sides have called for the use of causal meth-
ods to help clarify matters (Boly et al., 2017; Odegaard et al.,
2017; Block, 2019). Here we explored findings from one of the
best methods of causally investigating human brain function,
synthesizing several decades of iES research undertaken in the
PFC. Together, the extant iES literature suggests no general role
for the PFC (especially its most anterior aspects) in conscious ex-
perience. Indeed, there is no part of the brain wherein iES is less
likely to cause a noticeable change in consciousness than the
most anterior regions of the PFC (Fox et al., 2020) (Figs. 2 and
3). However, the rare effects that are elicited are often complex,
multimodal, and highly heterogeneous, including changes in per-
ceptual phenomenology, thought processes, and emotional
states. That said, reliable effects are largely confined to PFC
regions such as the ACC or OFC (Fig. 4). Importantly, these are
not the lateral PFC regions many theorists have in mind when
they argue for an essential role for the PFC in consciousness.
There are exceptions to this general trend, however, with some
isolated case reports of thoughts (Popa et al., 2016; A. Liu et al.,
2020) and visual hallucinations (Blanke et al., 2000; Vignal et
al., 2000) elicited by iES of the more ventral and posterior por-
tions of the lateral PFC (Fig. 4). But in hundreds of iES studies
testing thousands of patients, comparable effects have never
previously been reported, nor have they subsequently been
replicated (Selimbeyoglu and Parvizi, 2010).

We therefore conclude that iES of lateral PFC regions does
not reliably affect conscious experience, as might be predicted by
most prefrontal theories of consciousness. This conclusion is
largely consistent with previous reports that patients with even
major lesions in the PFC show no apparent degradation in con-
sciousness (Hebb and Penfield, 1940; Mettler, 1949; Brickner,
1952; Pollen, 1999). However, there have also been cases in which
lateral prefrontal damage does appear to impair patients’ ability to
consciously interact with the environment (Barceló and Knight,
2002; Stuss and Knight, 2013), and what lesion findings tell us
about the role of the PFC in consciousness remains intensively
debated (Kozuch, 2014; Koch et al., 2016; Boly et al., 2017;
Odegaard et al., 2017). It is also significant that the PFC is not the
only region of the brain where iES-elicited effects are rare: other
high-level association areas also appear to share this property (e.g.,
the posterior cingulate cortex) (Foster and Parvizi, 2017), and
these trends appear to be driven by the brain’s intrinsic network
architecture (Fox et al., 2020). Low rates of iES effects are not
unique to prefrontal regions, but appear to be a more general
property of brain areas involved in abstract thought and complex
cognitive function, although the lowest elicitation rates are none-
theless found in the anterior PFC (Fox et al., 2020; Koch, 2020).

In any case, the PFC comprises many subregions (Fig. 2), and
various models of the PFC and consciousness often propose
prominent roles for areas other than the lateral PFC (Dehaene
and Changeux, 2011; Brown et al., 2019; Mashour et al., 2020).
As we have shown, relatively rare, but nonetheless reliable, effects
can be elicited from such regions, including the ACC (Talairach
et al., 1973; Parvizi et al., 2013; Yih et al., 2019) and OFC (Fox et
al., 2018b, 2020; Yih et al., 2019). While the specificity of the

effects in the OFC and ACC does not suggest a general role for
these regions in consciousness, stimulation of these regions does
result in reproducible changes in emotional experience and may
provide support for recent accounts of higher-order theories of
emotional consciousness (LeDoux and Brown, 2017; LeDoux,
2020a). That said, the specific nature of most effects (whether
visceral, somatic, olfactory, or emotional), as well as the lack of
effects on ongoing perception, contradicts the notion that the
PFC has a general role in rendering existing perceptual repre-
sentations conscious.

Notably, patients might also be mind-wandering during a
given iES trial; if attention is focused on internal thoughts rather
than perceptual inputs, and if iES perturbs those thoughts, the
patients might not report those perturbations. Indeed, if subjects
are mind-wandering, they may not notice perturbations in
ongoing perceptual experience. On balance, however, stimula-
tion in the OFC and ACC tends to elicit phenomenal experiences
that are seemingly unrelated to ongoing sensory processing (i.e.,
effects that can be considered hallucinations in the technical
sense). Importantly, the opposite is often the case outside of the
PFC. For example, stimulation of the fusiform gyrus produces
distortions of face perception, which are almost exclusively tied
to ongoing percepts, such as alterations in the facial features of
clinical staff (Parvizi et al., 2012; Rangarajan et al., 2014; Keller et
al., 2017; Schrouff et al., 2020).

Ultimately, this literature raises the critical question of the
underlying mechanistic reason(s) that stimulation of certain
areas elicits changes in conscious experience, whereas stimula-
tion of others does not (e.g., intrinsic/extrinsic connectivity, cell
types, time courses, informational coding schemes, and so on).
Our prior work has shown that simple neurophysiological attrib-
utes, such as myelin concentration or electrical excitability, are
unable to explain elicitation rates across the cortical mantle (Fox
et al., 2020). One possible explanation lies in the specific tuning
and encoding properties of single neurons throughout the cortex.
Individual PFC neurons can be tuned to many higher-order fea-
tures of perception, action, and intention, whereas neurons in
unimodal regions tend to be tuned toward highly specific percep-
tual features (e.g., edge-selective neurons in V1) (Fusi et al.,
2016; Parthasarathy et al., 2017). Further, neural coding schemes
in the PFC are denser relative to the sparse codes found in per-
ceptual areas (Duncan, 2001; Stokes et al., 2013). Therefore, PFC
neurons are thought to represent information across larger cir-
cuits; hence, the localized nature of iES might result in lower
rates of effect elicitation compared with unimodal regions where
contiguous neuronal populations code for specific perceptual
features (Fox et al., 2020). Even so, we expect that the disruptive
nature of iES should cause some perturbations in denser circuits
(as observed in the ACC and OFC, for instance) and, under
higher-order and global workspace theories, perturb ongoing
perceptual experience.

One major caveat is that iES to the PFC might still be influ-
encing consciousness, but in subtle ways not noticeable or
reportable by patients (Fox et al., 2020). Subtle effects on
patients’ behavior or task performance that are not reported in
the paradigms used here could nonetheless be tested in future
work applying iES during experimental tasks. Such work would
be particularly valuable in evaluating iES effects in light of studies
showing that both noninvasive transcranial brain stimulation
(Rounis et al., 2010) and lesions (Marinkovic et al., 2000; Del Cul
et al., 2009; Fleming et al., 2014; Colas et al., 2019) of the lateral
PFC impair perceptual abilities under controlled task conditions.
Additionally, more systematic and targeted iES research, with
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more elaborate and structured reports following each stimula-
tion, would provide much needed information. Typically, iES
research is undertaken in an opportunistic manner, with
research goals subordinate to clinically relevant functional map-
ping, but lengthier and more systematic sessions are well within
the bounds of ethical research and clinical constraints. In-depth
efforts of this kind focused on the PFC might help to further
inform the current debate and might replicate the rare findings
reported to date (Blanke et al., 2000; Vignal et al., 2000; Vaca et
al., 2011; Popa et al., 2016; A. Liu et al., 2020).

Of course, the results of iES studies alone cannot resolve this
debate. Moreover, we hasten to reiterate both the limitations and
limited understanding of the iES methodology (Box 1).
Nonetheless, the iES method provides one of the most direct
windows into human conscious experience. We believe that the
extant iES findings present a challenge to higher-order and
global workspace views, which suggest that conscious contents
are represented in the PFC based on largely correlative evidence.
We hope that the research outlined here can help to both inform
and refine theoretical accounts of the PFC’s clearly complex role
in human consciousness.
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